Article 9320

Title of the article

TESTING LARGE NEURAL NETWORKS ON SMALL SAMPLES 

Authors

Ivanov Alexander Ivanovich, doctor of technical sciences, associate professor, senior researcher, Penza Scientific Research Electrotechnical Institute (9 Sovetskaya street, Penza, Russia), ivan@pniei.penza.ru
Kubasov Igor Anatolyevich, doctor of technical sciences, professor, sub-department of information technologies, Academy of Management of the Ministry of Internal Affairs of the Russian Federation (8 Zoy and Alexander Kosmodemianskih street, Moscow, Russia), igorak@list.ru
Samokutyaev Alexander Mikhailovich, Hero of Russia, pilot-cosmonaut, Deputy Commander of the Cosmonaut Detachment of the Gagarin Research Institute of the CTC (Star City, Shchelkovsky district, Moscow region, Russia), samo@gctc.ru

Index UDK

004.838.2 

DOI

10.21685/2307-4205-2020-3-9 

Abstract

Background. The paper investigated the problems of testing neural networks used to improve the reliability and quality of complex technical systems. The conditions under which rapid and correct testing of the quality of decisions made by large neural networks on small samples is possible have been revealed.
Materials and methods. The probability of errors of the first kind (erroneous rejection of recognition of the "Own" image) was estimated based on testing without reducing the test sample. It has been shown that for neural network solutions in the form of a binary code, the probability of errors
of the second kind (erroneous adoption of the "Alien" image) can be estimated with a significant reduction in the volume of the test sample.
Results and conclusions. A logarithmic decrease in the volume of the test sample was revealed when moving from statistical analysis of ordinary codes to statistical analysis of Hamming distances between the image code "Own" and the image codes "Alien." The mathematical model of calculation of probabilities of errors of the second kind of trusted neural network application on small samples is presented. The need for further standardization of trusted applications of artificial intelligence is justified, allowing to increase the reliability and quality of complex technical systems. 

Key words

artificial intelligence, neural networks, trusted neural network applications, test sample size.

 Download PDF
References

1. Nikolenko S., Kadurin A., Arkhangel'skaya E. Glubokoe obuchenie [Deep learning]. Saint-Petersburg: Piter, 2018, 480 p. [In Russian]
2. GOST R 52633.5–2011 Zashchita informatsii. Tekhnika zashchity informatsii. Avtomaticheskoe obuchenie neyrosetevykh preobrazovateley biometriya-kod dostupa [GOST R 52633.5-2011 information Security. Information security techniques. Automatic training of neural network converters biometrics-access code]. [In Russian]
3. Ivanov A. I., Zakharov O. S. Sreda modelirovaniya «BioNeyroAvtograf» [Environment modeling "Bioneurological »]. Available at: http://pniei.rf/ activity/science/noc/bioneuroautograph.zip [In Russian]
4. Ivanov A. I. Avtomaticheskoe obuchenie bol'shikh iskusstvennykh neyronnykh setey v biometricheskikh prilozheniyakh: ucheb. posobie [Automatic training of large artificial neural networks in biometric applications: textbook]. Penza, 2013, 30 p. Available at: http://pniei.rf/activity/science/noc/tm_IvanovAI.pdf [In Russian]
5. Morelos-Saragosa R. Iskusstvo pomekhoustoychivogo kodirovaniya [The art of noise-tolerant coding]. Moscow: Tekhnosfera, 2007, 320 p. [In Russian]
6. Juels A. A, Wattenberg M. Proc. ACM Conf. Computer and Communications Security. Singapore, 1999, pp. 28–36.
7. GOST R 52633.3–2011 Zashchita informatsii. Tekhnika zashchity informatsii. Testirovanie stoykosti sredstv vysokonadezhnoy biometricheskoy zashchity k atakam podbora [GOST R 52633.3-2011 information Security. Information security techniques. Testing the resistance of highly reliable biometric security tools to matching attacks]. [In Russian]
8. Boll R., Konnel Dzh. Kh., Pankanti Sh., Ratkha N. K., Sen'or E. U. Rukovodstvo po biometrii [Guide to biometrics]. Moscow: Tekhnosfera, 2007, 368 p. [In Russian]
9. Shapkin A. V., Kubasov I. A., Ivanov A. I. Vestnik Voronezhskogo instituta FSIN Rossii [Bulletin of the Voronezh Institute of the Federal penitentiary service of Russia]. 2019, no. 4, pp. 132–144. [In Russian]

 

Дата создания: 24.11.2020 14:46
Дата обновления: 24.11.2020 16:03